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1 Problem setup

Model a 1D object that has a length of 1, with a uniform initial temperature T0. Each end of the
rod will be held at a temperature of 0. Assume no heat escapes along the length of the rod. There
are no external heat sources or sinks.

We can describe this system by the following set of equations:

∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
= 0 x ∈ [0, 1], t > 0 (1)

u(0, t) = u(1, t) = 0 t > 0 (2)

u(x, 0) = T0 x ∈ [0, 1] (3)

1.1 Step 1: Convert PDE to ODEs

Our first step is to convert our partial differential equation (1) into multiple ordinary differential
equations. We will apply the separation of variables technique:

u(x, t) = X(x)T (t) (4)

Inserting this definition into the above, we get:

X(x)
dT (t)

dt
=

d2X(x)

dx2
T (t)

Divide by u(x, t) = X(x)T (t) and we get:

1

T (t)

dT (t)

dt
=

1

X(x)

d2X(x)

dx2

This expression has the form

Stuff that only depends on t = Stuff that only depends on x

So both sides must be constant. This allows us to write:

dT (t)

dt
= −λT (t) (5)

d2X(x)

dx2
= −λX(x) (6)
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Revised Boundary condition If we apply separation of variables to the boundary condition in
equation (2), we get:

0 = u(0, t) = X(0)T (t)

and
0 = u(1, t) = X(1)T (t)

Assuming that the function T (t) ̸= 0, then we can write

X(0) = X(1) = 0 (7)

1.2 Step 2: Get a general solution for u(x, t)

Next, we will get a general solution for u(x, t). We will do this by considering 3 cases:
1. λ = 0
2. λ > 0
3. λ < 0

and apply the boundary conditions in equation (7) to each case

1.2.1 Case 1: λ = 0

If λ = 0, then we can write equation (6) as:

d2X(x)

dx2
= 0 =⇒ X(x) = ax+ b

If we use the boundary condition in equation (7) to find a and b, we get

a = b = 0 =⇒ X(x) = 0

This is what math texts would call the trivial solution, and I call BORING! So we throw that
solution out.

1.2.2 Case 2: λ > 0

If λ > 0, then we can define a k > 0 such that λ = k2 and then we can write equation (6) as:

d2X(x)

dx2
= −k2X(x) =⇒ X(x) = a sin(kx) + b cos(kx)

If we use the boundary condition at x = 0 in equation (7) to find a, b, and k we get

X(0) = 0 = a sin 0 + b cos 0 =⇒ b = 0 =⇒ X(x) = a sin(kx)

Now apply the boundary condition at x = 1:

X(1) = 0 = a sin k =⇒ a = 0 or sin k = 0

Allowing a = 0 is boring–as defined above, so let’s find possible values for k:

sin k = 0 =⇒ k = nπ, n ∈ N (n = 1, 2, 3, . . .)

So we know there are infinitely many solutions of the form

X(x) = a sin(nπx) λ = n2π2 n ∈ N
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1.2.3 Case 3: λ < 0

If λ < 0, then we can define a κ > 0 such that λ = −κ2 and then we can write equation (6) as:

d2X(x)

dx2
= κ2X(x) =⇒ X(x) = a sinh(κx) + b cosh(κx)

If we use the boundary condition at x = 0 in equation (7) to find a, b, and k we get

X(0) = 0 = a sinh 0 + b cosh 0 =⇒ b = 0 =⇒ X(x) = a sinh(κx)

Now apply the boundary condition at x = 1:

X(1) = 0 = a sinhκ =⇒ a = 0 or sinhκ = 0

Allowing a = 0 is boring–as defined above, however, sinhκ = 0 only when κ = 0 which is also not
allowed. So this case has no meaningful solutions as well.

Since we need to include all possible solutions in our general solution, we can write:

u(x, t) =

∞∑
n=1

Xn(x)Tn(t)

=

∞∑
n=1

an sin(nπx)e
−n2π2t (8)

1.3 Step 3: Find our particular solution for u(x, t)

Use the initial condition in equation (3) to find our particular solution for u(x, t), specifically, we
can say:

T0 =

∞∑
n=1

an sin(nπx)

We can get the constants an by integrating the above equation as follows∫ 1

0

dx sin(mπx)T0 =

∫ 1

0

dx sin(mπx)

∞∑
n=1

an sin(nπx)

Solving the integrals, we find:

an = 2T0

∫ 1

0

sin(nπx) =

{
0 n = 2, 4, 6, . . .
4T0

nπ n = 1, 3, 5, . . .

Therefore:

u(x, t) =

∞∑
n=1

4T0

(2n− 1)π
sin ((2n− 1)πx) e−(2n−1)2π2t (9)
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